При исследовании сложных объектов с помощью интуиционистских моделей математической логики [1, 2, 3] и, в частности, алгебраических моделей конструктивной (интуиционистской) логики (АМКЛ), обращает на себя внимание следующий факт. Интуиционистские модели могут быть истолкованы (в виде приближенного отображения действительности) как возможные состояния знания некоторого познающего субъекта, как модели творческого сознания. С помощью самой структуры или способа построения этих моделей удалось показать достаточно интересные алгоритмические интерпретации основ квантовой теории, теории калибровочных полей и общей теории относительности; квантовой теории калибровочных полей, квантовой теории гравитации, редукции квантованных когерентных состояний ультраструктур нейронов мозга, особых состояний сознания, структуры качественных выводов из астрономической модели Керра; удалось сопоставить структуру Нагорной проповеди и библейских заповедей с этапами построения АМКЛ [4], а также многие другие интерпретации особенно в области медицины (см. http://samlib.ru/ ).
Возможно, любую интересную и сложную область познания можно интерпретировать с помощью этих достаточно гибких по своему построению интуиционистских моделей АМКЛ (далее будем писать иногда просто "моделей" или М). Формализация этого подхода может по мере накопления опыта и новых данных постепенно уточняться и специализироваться при изучении отдельных областей знания. Можно рассматривать эти модели как некоторый "переводчик" терминов, взятых из специализированных областей знания на язык построения М; они являются как бы некоторым формализованным познающим субъектом. Познание здесь осуществляется в виде алгебраических моделей интуиционистской логики (моделей Бета-Крипке). Такие М при практическом их использовании отображают динамику состояний ("свободно становящиеся последовательности" [3]), или динамику знания некоторого познающего субъекта (алгоритма вычисления АМКЛ). Приведем краткое описание этого алгоритма, детальное описание и множество примеров приведено в [1].
В исходном массиве действительных (или комплексных) чисел или чисел k-значной логики) Х(n+1, m), где n - число переменных (столбцов в Х) и m - число состояний t (строк), записанных в порядке течения времени t, выделяется один или несколько столбцов Y, для которых Y = f(X). В дальнейшем для краткости этот массив (базу данных) будем записывать как (Х, Y, t), где t - время (или порядковый номер строки или в иных случаях номер индивида). Значения Y разбиваются на k частей (обычно на 2 по медиане), и эти значения кодируются, например, в виде булевой функции Z = (0, 1), где например, 0 - целевые состояния и 1 - не целевые. Далее каждое состояние (строки в Х), которому задано определенное целевое значение Z, сравнивается со всей своей окрестностью нецелевых состояний, начиная с ближайших. Строятся конъюнкции К* (переменные соединены логическими связками "и", &) малого числа r открытых интервалов dx значений переменных для целевого состояния; r будем называть рангом конъюнкции К*. Итоговые К** (по всем целевым состояниям) вычисляются таким образом, чтобы К** были бы простыми импликациями (логические связки "если, то", -->), истинными формулами для Z, например: "если К**, то Z = 0" (иногда эти импликации будем называть исходными М). Примем также (это наше семантическое соглашение), что вычисление К* относится к функции подсознания, а К** и далее по алгоритму - к функции сознания. Затем вычисляются оценки Г для каждой К** (число состояний, где встречается данная К**). Далее строятся тупиковые дизъюнктивные формы (АМКЛ) для каждого значения Z = (0, 1) в отдельности. Начиная с наибольшей Г отбираются эти К и объединяются логическими связками "или" (V); предварительно отбрасываются те из них, множества состояний которых ("покрытия", множества номеров строк) уже входят в объединение покрытий ранее отобранных итоговых К (т. е. строится тупиковая дизъюнктивная форма или итоговая М). Далее все вышеприведенные аналогичные операции совершаются и для нецелевых состояний. "Целевым" значением здесь становится Z = 1; соответствующее объединенное посредством связок V множество этих К присоединяется в скобках к исходному целевому множеству К посредством связки V и константы " - " ("ложь", "отрицание").
В некоторых случаях требуется построение вероятностной модели. Для этого все частичные пересечения двух или более К обозначаются как новые К, оставшиеся множества и эти новые К вновь упорядочиваются по их Г, переиндексируются и подсчитываются итоговые Г и Г/m. Эти частоты в сумме дают единицу.
После вычисления модели обычно проводится ее интерпретация (обычно с помощью подходящих информационно-поисковых систем) - сопоставление с уже известными более общими теориями, в которые К входят как подмножества (поиск "мажоранты", "наводящих соображений", "пояснений" [5]). Иногда вычисляется также контекст отдельных наиболее интересных итоговых К, входящих в тупиковую форму. Это замкнутые интервалы значений всех переменных, не включенных в данную К, т. е. только для "своих" Г строк-состояний (для "покрытия" этой К). Интерпретация контекста (вместе с К) соответствует возможному "объяснению" функций Z и также несущественных переменных. При необходимости аналитического отображения логической модели производится аппроксимация всех подмножеств значений (х, у) для каждого К обобщенными рядами Эрмита или Фурье [1, 2, 6]. Будем считать, что мы потенциально имеем возможность отслеживать и сохранять в памяти компьютера весьма большие, но конечные массивы числовой содержательной информации, которая отображает доступный нам смысл исследуемого процесса.
Во многих часто встречающихся случаях Y = (у1, у2, ...) является многокритериальной функцией для Х (алгоритм см. в [1]). В более общем случае можно считать, что Х является массивом всей доступной информации, как бы некоторый текст (в динамике, по строкам), посредством которого исследуемый объект обменивается информацией с исследователем. Номера соответствующих переменных ("слов", столбцов массива Х), являются обычно некоторым ограниченным словарем, тезаурусом. При этом, вообще говоря, каждое слово из этого словаря можно задать в качестве функции цели у относительно оставшейся части Х. Все дело заключается в том, в каком контексте (смысле) проводится исследование. Более того, иногда даже конкретная цель для исследователя не совсем ясна. В этом случае можно вычислить некоторое множество моделей для "обзорного" множества у и отобрать модель, для которой информационная энтропия меньше - практически, можно предпочесть модель, которая содержит меньшее число выводов К с оценками Г = 1. Конечно, далее если возможно, следует с помощью информационно-поисковых средств интерпретировать полученную модель, а иногда и отбросить неинтересные тавтологии, которые неожиданно выявляются при тесной корреляции у с некоторыми сходными (с у) по смыслу переменными. Затем, если это требуется, уже строится модель для многокритериального Y. Еще отметим, что при исследовании объектов в динамике в массив исходных данных можно включать информацию (модели, в том числе и их Y), полученные на предыдущем шаге исследования (модели с "памятью"). Особенно это характерно при исследовании конфликтующих структур(дипломатия, разведка, информационное воздействие на социальные структуры...), при этом обычно Y отображается в виде значений k-значной логики.
Сами модели АМКЛ в динамике (с контекстами) являются как бы наборами кадров некоторого кинофильма, отображающего поведение исследуемого объекта, который можно видеть с запаздыванием, зависящим от времени передачи исходных данных и всех вычислений. Вычисляемые итоговые импликации К (отдельные модели из АМКЛ) отображают здесь изменения во времени исследуемого объекта (или субъекта). В случае прогнозирования поведения объекта в будущем, входные данные должны включать также некоторые временные переменные: скорости, ускорения и т. п. Весьма часто такие процессы идут с обратной связью - Y зависит не только от значений входных переменных и Y в данный момент времени, но также и от более ранних их значений. При прогнозировании удобно использовать также аппроксимацию всех подмножеств значений (х, у) для каждого К обобщенными рядами Фурье или Эрмита - поведение объекта отображается как бы в виде "голографической интерференции" различных волн или в виде некоторых "пакетов" волн.
Будем считать, что на первом этапе исследования всевозможных текстов по заданной теме уже вычислены модели, которые распознают в этих произведениях ситуации, отображаемые в итоге некоторыми наборами научных, психологических, философских, религиозных понятий или иных обобщенных выводов, часто обозначаемых определенными терминами. Приведем далее список возможных семиотических соглашений (интерпретаций результатов функционирования самого алгоритма построения АМКЛ), которые в итоге приписывают как самому алгоритму построения, так и различным параметрам модели, записанной в общем виде (например, функционалам К и Г) их определенные смысловые значения в различных ситуациях. Эти соглашения могут уточняться по мере накопления новых сведений о применении этих соглашений в определенной содержательной области. Следует отметить, что, возможно, лишь интуиционистские модели в настоящее время позволяют как бы более тонко "настроить" способы понимания, семантику получаемых выводов из моделей, относящихся к определенному содержательному виду. Будем записывать (жирным курсивом) далее нумерованный список по теме статьи некоторых сложных высказываний и понятий различных цитируемых авторов. Эти высказывания будем сопоставлять с различными стадиями функционирующего алгоритма или с наличием различных параметров модели (здесь как бы составляется словарь заранее согласованного "перевода" слов с одного языка на другой). Ссылка на литературу для каждого элемента списка приводится лишь один раз - она относится и к последующим элементам списка, вплоть до очередной новой ссылки (но внутри поясняющего текста могут быть свои ссылки). Приводимые ниже элементы списка следуют ходу изложения текста цитируемых авторов. В этом списке и в соответствующих интерпретациях даются по возможности лишь краткие определения различных терминов. Их более точный смысл следует искать в контексте всей статьи. Далее в интерпретациях курсивом выделяются термины и высказывания, для краткости поясняющие, например, с точки зрения психологии эти термины (или когда приводятся примеры). Иногда курсив применяется просто для выделения смысла слов.
1. Модель "вызов - ответ" [7]. - Вызов - алгоритм, программа; ответ - вычисленные модели с разнообразными контекстами в зависимости от исследования различных объектов (или при исследовании определенного объекта в динамике). Эти модели в процессе их интерпретации могут порождать разные теории. Положительный вызов - структура модели в процессе ее применения остается прежней; отрицательный вызов - модель при накоплении ошибок вновь вычисляется по новым данным. Возникновение новых школ (вычисление новых моделей обычно при незначительном изменении основного алгоритма).
2. Процессы экспансии. - 1) Процесс использования уже вычисленной модели вплоть до достижения порога неприемлемых ошибок. 2) Распознавание образов (ранее вычисленных К) в новых объектах или в новых состояниях. 3) Использование соответствующих аналитических моделей, т.е. функций с их бесчисленным множеством значений вместо ограниченного числа базовых значений. 4) Использование аналитического продолжения вычисленных функций.
3. Моральное старение метода. - Полное или частичное изменение алгоритма.
4. Фактор эстетической экспертизы. - Согласование существующего информационного потока с ограниченными возможностями творческого сознания исследователя. Здравый (robust), понятный, "грубый" первоначальный подход к исследованию - например, разбиение множества вещественных чисел на отдельные их интервалы, использование в начале исследования булевой или k-значной логики. Стремление получить наиболее простое и понятное логическое выражение (модель) в результате исследования. Объект в эстетическом смысле прекрасен, если он в итоге, в целом, понятен и желателен!
5. Тенденция laisser-faire (давать делать). - Для вычисления модели необходимо некоторое время наблюдать функционирующий объект с целью получения информации от него (число уже зарегистрированных состояний должно быть значительно больше, чем число переменных).
6. Гедонистический фактор, психотерапевтический нарциссизм. - См. п. 4 (здесь субъект сам алгоритм).
7. Создание языка, описывающего психотерапевтическую деятельность. - Логический язык исследования сложных объектов см. в публикациях [2, 3].
8. Харизма. - Экстремум аналитической (обобщенной) функции цели, соответствующей в итоге некоторой цепочке иерархически вычисляемых АМКЛ (полагается, что некоторый экстремум всегда существует). Практически, исследователь может после процесса интерпретации различных К выбрать одну из них К1 и продолжать исследование объекта лишь в области тех состояний, которые соответствуют К1. В полученной далее модели АМКЛ1 выбирается аналогичным образом К2 ... и т.д. В необходимых случаях затем вычисляется соответствующая обобщенная аналитическая функция.
9. Стремление психотерапии являть собой феномен культуры.- Интерпретация вычисленной модели.
10. Производство идеи и ее распространение в коммуникативном пространстве[8]. - Распознавание во многих достаточно сложных теориях основных этапов вычисления АМКЛ (или в основе - интуиционистской логики). Рекомендации по использованию метода построения таких моделей, по крайней мере, на первых этапах экспериментальных исследований.
11. Аттрактив-анализ. - вычисление К (в данном случае предикатов как классов эквивалентности - некоторых множеств "стягивающихся точек-состояний" объекта исследования).
Основные понятия структуры психотерапии Сосланда соответствуют лишь главным ("крупномасштабным") стадиям вычисления алгебраических моделей конструктивной (интуиционистской) логики. Скандальность его книги (в "своих" кругах), возможно, связана с приведенным выше раскрытием им "карт" - обычно скрытых мотивов поведения, весьма характерных именно для его клана-этноса.
Литература
1. Щеглов В. Н. Творческое сознание: интуиционизм, алгоритмы и модели. - Тула: "Гриф и К", 2004. - 201 с. (см. http://publ.lib.ru) или http://samlib.ru/ .
2. Щеглов В. Н. Творческое сознание: интерпретация алгоритма построения алгебраических моделей конструктивной (интуиционистской) логики, 2007. - 12 с. (см. http://publ.lib.ru или http://publ.lib.ru).
3. Драгалин А. Г. Математический интуиционизм. - М.: "Наука", 1979. - 256 с.
4. Щеглов В. Н. Нагорная проповедь: сопоставление с алгоритмом построения алгебраических моделей интуиционистской логики, 2008. - 9 с. (см. http://publ.lib.ru или http://samlib.ru/ , там же и другие статьи по АМКЛ-интерпретациям).
5. Шанин Н. А. Об иерархии способов понимания суждений в конструктивной математике// Труды математического института имени В. А. Стеклова, CXXIX // Проблемы конструктивного направления в математике, 6. - Л.: "Наука", 1973. - С. 203 - 266.
6. Антосик П., Микусинский Я., Сикорский Р. Теория обобщенных функций. - М.: Мир, 1976. - 312 с.
7. Сосланд А. Фундаментальная структура психотерапевтического метода, или как создать свою школу в психотерапии - М.: Логос, 1999. - 57 с.
8. http://www.drugie.ru/ (на этом сайте см. различные интервью с А. Сосландом в 2011 г.)
См. публикации автора: http://samlib.ru , http://publ.lib.ru (здесь также статьи с формулами), http://shcheglov.livejournal.com/ (ссылки на новые статьи). Фотоальбом 1: http://4put.ru/pics/u_135/ , фотоальбомы 2, 3, 4: http://shcheglov.gallery.ru , фотоальбом 5: http://photo.qip.ru/users/shcheg32/151006983/ . Фотоальбом 7: http://photoalbums.ru/thumbnails.php?album=3649 Email: [email protected]